Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
BMJ Mil Health ; 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1962362

ABSTRACT

BACKGROUND: In the face of the COVID-19 pandemic, the Defence Science and Technology Laboratory (Dstl) and Defence Pathology combined to form the Defence Clinical Lab (DCL), an accredited (ISO/IEC 17025:2017) high-throughput SARS-CoV-2 PCR screening capability for military personnel. LABORATORY STRUCTURE AND RESOURCE: The DCL was modular in organisation, with laboratory modules and supporting functions combining to provide the accredited SARS-CoV-2 (envelope (E)-gene) PCR assay. The DCL was resourced by Dstl scientists and military clinicians and biomedical scientists. LABORATORY RESULTS: Over 12 months of operation, the DCL was open on 289 days and tested over 72 000 samples. Six hundred military SARS-CoV-2-positive results were reported with a median E-gene quantitation cycle (Cq) value of 30.44. The lowest Cq value for a positive result observed was 11.20. Only 64 samples (0.09%) were voided due to assay inhibition after processing started. CONCLUSIONS: Through a sustained effort and despite various operational issues, the collaboration between Dstl scientific expertise and Defence Pathology clinical expertise provided the UK military with an accredited high-throughput SARS-CoV-2 PCR test capability at the height of the COVID-19 pandemic. The DCL helped facilitate military training and operational deployments contributing to the maintenance of UK military capability. In offering a bespoke capability, including features such as testing samples in unit batches and oversight by military consultant microbiologists, the DCL provided additional benefits to the UK Ministry of Defence that were potentially not available from other SARS-CoV-2 PCR laboratories. The links between Dstl and Defence Pathology have also been strengthened, benefitting future research activities and operational responses.

2.
BMJ INNOVATIONS ; 8(2):111-116, 2022.
Article in English | Web of Science | ID: covidwho-1938028
SELECTION OF CITATIONS
SEARCH DETAIL